
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 25Lecture 25
Topics to be coveredTopics to be covered

 SECURITY
 Security Models
 Class Loaders
 Bytecode Verification
 Security Managers

JDK 1.0 Security ModelJDK 1.0 Security Model
 Original security model, “sandbox”
 Very restricted environment
 All incoming code is considered

untrusted
◦ Access to limited resources inside the

sandbox
 Local code is trusted
◦ Full access to system resources

 Security manager determines the
access limit

JDK 1.0JDK 1.0

JDK 1.1 JDK 1.1 Security ModelSecurity Model
 New concept: “Signed applet”
 Digitally signed applet is treated like

local code
◦ Packaged in a JAR file along with the

signature
◦ Full access

 Unsigned applets go through sandbox

JDK 1.1JDK 1.1

Check PointsCheck Points
 Compiler and bytecode verifier
◦ Allow only legitimate Java bytecode

 Classloader
◦ Defines a local name space for the code

to ensure its execution doesn’t interfere
with other programs

 Security manager
◦ Apply access restriction to untrusted code

Check PointsCheck Points

Byte code
verifier

Class
Loader

Security
Manager

Applet

Execute

A flaw in any of these subsystems may cause a security hole

Bytecode VerifierBytecode Verifier
 Bytecode – Compilation of class file in a

platform-independent form
 The applet bytecode is verified statically to

verify the bytecode format
◦ Begins with right “magic number”
 attribute of all java class files
◦ Is not truncated or have extra bytes

appended
◦ Contains recognized attributes of proper

length
◦ Do not contain any unrecognized info

Bytecode VerifierBytecode Verifier
 Static type checking is difficult to

implement
◦ Hostile compilers can create instructions

that processor can execute but java
compiler can not generate
 How should bytecode verifier detect non-

standard bytecode?
◦ Flaws can be exploited

Class loaderClass loader

 Ensure that fundamental Java classes
are not replaced by other classes
referenced by applets
◦ i.e. replace the security manager and skip

the security checks
 Class tag indicates which class loader

has installed it
◦ Determine the privilege level

Class LoaderClass Loader
 Built-in classes have a special class

loader
 Applet Class Loader creates its own

namespace
 Classes in one namespace can not

reference classes in another
namespace

 Predefined path for finding classes
◦ The built-in classes
◦ Applet’s own namespace classes

Security ManagerSecurity Manager
 Provides dynamic security checks
 All access requests are sent to

security manager
◦ Based on the class’s privileges, the

request is denied or honored
 Security managers are customizable
◦ Good or bad?

